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ABSTI_CT

Planetary rovers pruvlde a considerable challenge for robotic systems in that they must operate tl)r

long periods autonomously, or with relatively little intervention. To achieve this, they need to ha_,e

on-board t'autt detection and diagnosis capabilities in order to determine the actual _tate ,)t" the vehicle.

and decide what actions are sale to perform. Traditional model-based diagnosis techniques are not

suitable tbr rovers due to the tight coupling bet,_,een the vehicle's pertormance and its environment.
H?bnd diagnosis using particle filters is presented as an alternative, and its strengths and weaknesses

are examined. We also present some extensions to particle tilters that are designed to make them

more suitable tbr use in diagnosis problems.

1 _TRODUCTION

Planetary rovers provide a considerable challenge for robotic systems in that they must operate for long periods

autonomously, or with relatively little intervention. To achieve this, they need to have on-board fault detection and

diagnosis capabilities in order to determine the actual state of the vehicle, and decide what actions are sate to perform.

The diagnosis problem is to determine the current state of a system given a stream of observations of that system. In

traditional model-based diagnosis systems such as the Livingston system [lj that was a part of the Remote Agent

experiment [2,31 diagnosis is pertbrmed by maintaining a set of candidate hypotheses (in the Remote Agent experiment,

only a single hypothesis was kept) about the current state of the system, and using the model to predict the expected

future state of the system given each candidate. The predicted states are then compared with the observations of what

actually occurred. If the observations are consistent with a particular state that is predicted, that state is kept as a

candidate hypothesis, l'f they are inconsistent, the candidate is discarded. Traditional diagnosis systems typically use a

logic-based representation, and use monitors to translate continuous-valued sensor readings into discrete-va/ued

variables. The system can then reason about the discrete variables, and compare them with the predictions of the model

using constraint propagation techniques.

Unlike spacecraft, rover performance depends significantly on environmental interactions. The on-board sensors

provide streams of continuous valued data that varies due to noise, but also due to the interaction between the rover and

its environment. For example, a rover may have a sensor that reports the current drawn by a wheel. In normal operation.

this quantity may vary considerably, increasing when the vehicle is climbing a hill, and decreasing on downward slopes.

The diagnosis system needs to be able to distinguish a change in the current drawn due to the terrain being traversed

from a change due to a thuit in the wheel. A second issue for rovers is that their weight and power is very, tightly

constrained. For this reason, any on-board diagnosis system must be computationally eftTcient, and s/_ould be able to

adapt to variations in processor availability. Ideally, we would also like it to adapt based on its own performance,

spending more time on diagnosis when a fault is likely to have occurred, and less time when the system appears to be

operating normatly.

A rover's close coupling with its environment poses a considerable problem for traditional model-based diagnosis

systems. A particular sensor reading may be normal under certain environmental conditions, but indicative of a fault in

others, so any monitor that translates the sensor reading into a discrete value such as "'nominal", or -off-nominal high"

must be sophisticated enough to take all the environmental conditions into account. This can mean that the dia anaosis

problem is effectively passed off to the monitors_the diagnosis system is very simple, but relies _.m discrete sensor
values from extremely complex monitors that "diagnose" the interaction between the system and its environment as part

of translating continuous sensor values into discrete variables. %) o,,erct)me this problem, we need to reason Jirectly

with the continuous values we recet,,e from sensors. That is. ,_ur model needs to be a hybrid s',stcm, consisting ..ff a set

,)t discrete moele_" that the system Call be in, along with a set of t2Olltillullus _,tate variables. The d_,namics o[" the Lvstem
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m,cd as a repre+.cntat_t,n Ik_r dccp, um-the_+retic planning problems, where the task t., +<>dcturmme the best action t_

pert_wnl _l'+cn the current ,:'<lunate ,+F tile actual _tate ,ff the system. This ¢stimate. rc(errud to as tile ;,c/i+'/ +late. is

uxactlv what we would like tie determine _n the diagnos_s problem, and the pr_+hlem ol keeping tile belier ,tale updated

i,. LS.Cll understood in the decismn the,+ry literature. The belief state is a pr<)buhlity distr'tbtttitm ,+,,er the <'.stem _,tates.

and *s updated by 'pushing it througtt'" the sy'qem model to produce a new prohahil_t 7 distribution over the possible
Iuture +;late of the s+_stem, and then ,;ondition_ng that distributitm on the actual +;ensor values that were obser_,ed to

remo,.e ally states inconsistent with the observations, reduce the probability of any .;tale from which the obser,,ations

are unlikely, and increase the probability of states that predict the _bservations well. We will take essentially this

approach to the diagnosis problem in this paper.

Lnfi)rtunately, the algorithm we described above for maintaining an accurate belief state is computat_onally intractable

For the types of problem we are interested in. Since our model contains both discrete and ,:ontinuous variables, the belief

state is a set of multidimensional probability distributions over the continuous state variables, with one such distribution

for each mode of the system. This distribution may not even be unimodal, so just representing it is a complex problem,

but applying the model to it to predict future state is infeasible due to the severe computational restrictions on-board a

rover. Therefore, an approximation needs to be made. The approach we will take is to use particle filtering [4,5].

A particle filter represents a probability distribution using a set of discrete samples, referred to as particles, each of

which has an associated weight. The set of weighted particles constitutes an approximation to the belief state, and has

the advantage over many approximation methods that it can represent arbitrary distributions. To perform diagnosis, we

apply the predictive model to each particle individually, and then condition on the observations by multiplying the

particle's weight by the probability of observing the sensor readings if the particle represented the true state of the

system. To prevent a small number of particles from dominating the probability distribution, the particles are then

resampled, with a new set of particles, each of weight one, being constructed by selecting samples randomly based on

their weight from the old set. We will discuss particle filters in more detail in Section 3 below.

Particle filters have already proven very+ successful for a number of tasks, including robot navigation [6]. Unfortunately.

they are less well suited to diagnosis tasks. This is because the mode transitions that we are most interested in

detecting--namely transitions to fault states--are those with the lowest probability of actually occurring. Thus. there is

a risk that there will be no particle in a fault state when a fault occurs, and so the system will be unable to diagnose the

fault as no panicle will predict the observations well. To apply particle filters successfully to rover diagnosis, we will

have to overcome this problem, and we discuss two approaches here. In the first, we increase the number of particles

when the current particles seem to be doing a poor job of predicting the observations. The idea is that when the total

weight of the particles falls, it indicates that no particle is predicting well [n response to this, the diagnosis system can

suggest that a fault may have occurred, and use additional resources (additional particles} to try to identify the fault.

A more promising approach is to think of the particle filter as a convenient way to dbide the available computation

time between individual states. [n this model, the system uses as many particles as computational limitations will allow,

and divides them up between the system modes according to how well each mode predicts the sensor readings as

before, but also according to how important it is to diagnose each mode. So for example, if a particular mode m predicts

the observations well at present, we would ensure that there are always some particles in a fault state rn' that is

reachable from m with non-zero probability. This means that if the fault did occur, there are guaranteed to be some

particles in ,F that would predict the observed behaviour after the fault.

In the next section we discuss the rover model in detail. [n Section 3 we describe particle filtenng and demonstrate its

weaknesses when applied to diagnosis problems. This paper describes a work in progress, so in Section 4. we will

describe our proposed modifications to the standard particle filter in detail, and in Section 5. present some preliminary

results on real rover data. using a simple version of our proposed approach. The final sectitm looks at the relationship

between this w_rk and some pre'_ ious approaches to this problem, and discusses some future directions tor this v,,ork.
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,arlotls ,)p.cr:ttl()lla[ alld latlll mode _, ,)l the n)'.cr. ,vhllc Ij1¢ Ct'qlillll.ll)ll v. ,late describes the speed _)l the wheels, the

current bcm¥, drawn by varmt.s ,,ubsy',tcms. ,rod ,,)un. F_Hhp.*.,in_ T_ I. we fi"_)dc[ a rover as a tuplc <M. _./_ E._',)> where

the ,_'tcmcnt's ,)f the tuplc are as t(>llows:

• I,I is the set of discrete modes the s,,stc/n can he in. We assume that _,1 us finite, and write ,, fi>r an individual
,',,stern mode.

• V ts the set _)f variables describing the continuous state ,)f the system.

• f" _s a transition function that defines how the system moves from ,me mode to another over time. We write

Pr#m.m ') for the pr()bahdity tllat the system moves from mode m to mode ,t '. We may also include a second

transmon function Pre_m.a.m't which is used _,hen an action ,z ,_ccurs. This gives the probability of moving

from _rz to ,n' ,*hen action a is executed.

• E is a set of equations that describe the evolution of the continuous variables over time. The equations that

apply at a given time potentially depend on the system mode. so we write E,,, (or the equations that apply in

mode ,m These equations will in general include a noise term to account for random variations in the state

variables. Here we will assume Gaussian noise, with the parameters of the Gaussian determined individually

for each equation.

• O is a function mapping the system state into observations. We will assume that the observable system

characteristics are some subset of the system variables V, with their values corrupted by Oaussian noise (again

with parameters that may be a function of the variable, and the system mode), so we write O(v,m) for the

observed value of some vat'/able t, in mode m.

[n addition to these, we will write Pr(s'[s) for the probability distribution over future states s' given some state s. where

and s' are hybrid states, so Pr(s'isj includes both the distribution over the future mode given by Prdm'Im], and the

distributions over the continuous variables given by E.,.

The diagnosis problem now becomes the task of determining the current mode m that the system is in. and the values of

all the state variables in V. We will assume for the rest of this paper that all the state variables are observable, that the

problem of tracking their values through the noise is relatively straightforward (if the noise in the observations

overwhelms the true values of the variables, we have little chance to deterrmne the system mode), and assume that the

diagnosis problem is to determine the mode only. Note that the particle filter approach we describe does determine the

most likely value for the system variables as well as estimating the mode.

For a system as complex as a rover, we would in general take a component-based approach to modelling, where each

component (for e,,_ample, a wheel) is modelled separately and the complete model is the cross-product of its

components. Since each component has much simpler dynamics, and typically a smaller set of discrete modes of

operation, this makes the modelling task much easier, but it also simplifies diagnosis by reducing the number of thults

that need to be considered to only those in components that aren't behaving nominally. Of course, we can expect a

certain amount of dependency in a component-based model (for example, we would expect each wheel to be moving at

approximately the same speed in most circumstances). Taking advantage of these dependencies allows us to simplify

the diagnosis problem in some cases, tbr example by identifying a wheel that is faulty because its behaviour doesn't

match that of the other wheels. However, we will not discuss these issues in detail here.

The experiments we will present in Sections 3 and 5 use actual telemetry data from NASA Ames' Marsokhod rover.

The Marsokhod is a planetary rover built on a Russian chassis that has been used in field tests from 1993-99 in Russia,

Hawaii, and the deserts of Arizona and California. The rover has six independently driven wheels, and for the

experiments we present here. the right rear wheel had a broken gear, and so rolls passively. The Marsokhod has a

number of sensors, including ones that measure body and arm geometry, and battery current. We will restrict our

attention to diagnosing the state of the broken wheel, and will therefore use only data from the wheel current and wheel

odometry sensors. We will treat each wheel independently in the diagnosis. For each wheel, we have a model, taken

from [7]. with the following characteristics (in fact, the model of each wheel is identical):

• ,I,1 consists of 23 system modes, including for example _1 idle state, _h¢ wheel current rising alter a command

is given, uniform speed driving, and a total of la different fault states.

• V consists of variables for the wheel current and wheel speed, and the derivatives of current and speed.

• T is a fairly sparse matrix. ,a,ith at most six successors t\)r any given mode. The probability of a transition to a

fault state is 0.01 or less. We include a separate transition lunction for the start and end ol'a command.
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Figure 1: The particle filtenng algorithm.

The state equations in E consist of the previous value plus a constant term and noise. The noise is Oaussian

with standard deviation in the range 0.001 to 1.0. and the equations are independent for each state variable.

The equations in 0 are independent for each variable (but vary, depending on the mode), and consist only of

the variable's value plus Gaussian noise. Again. the standard deviation varies from 0.001 to 1.0.

3 PARTICLE FILTERS

A particle filter approximates an unknown probability distribution using a weighted set of samples. Each sample or

particle consists of a value for every state variable, so it describes one possible complete state the system might be in.

As observations are made, the transition function is applied to each particle individually, moving it stochastically to a

new state based on its current dynamics, and then the observations are used to re-weight each particle to reflect the

likelihood of the observation given the particle's new state. In this way, particles that predict the observed system

performance are highly weighted, indicating that they are in likely states of the system [6]. The major advantage of

particle filters is that their computational requirements depend only on the number of particles, not on the size of the

system. This is of huge importance to us as it allows us to do diagnosis in an anytime fashion: increasing the number of

particles when there is computation time available, or when we suspect a fault has occurred, and decreasing the number

when other operations require the processor. To implement a particle filter, we require three things:

• A probability distribution over the initial state of the system.

• A model of the system that can be used to predict, given the current state according to an individual particle, a

possible future state of that particle. Since T is stochastic, and E includes noise terms, the predictive model

selects a new state for the particle in a Monte Carlo [g] fashion, choosing by sampling from the probability

distribution over possible future states.

• A way to compute the likelihood of observing particular sensor values given a state. In our case, this is given

by the observation function O.

The particle filte'nng algorithm is given in Figure [. Step (i) is the predictive step. where a new state is calculated in a

Monte Carlo way for each particle, and this new state is then conditioned on the observations in step lii), In the case of

our rover model, the initial distribution is uniformly in the Idle mode, in which there is no power to any of the wheels.

The predictive step is performed by applying T to each particle, and then applying the appropriate equations From E to

the state variables, sampling values from the Gaussian error terms. Once the particles have been re-weighted, we can

then calculate the probability of each mode simply by summing the weights of the particles in the mode.

Problems with particle filters for diagnosis

Unfortunately. there are a number of difficulties in applying particle filters to diagnosis problems, fn particular, the

filter must have a particle in a particular state heft)re the probability of that state can be e_,aluated. If a state has no

particles in it. the assumption is that its probability of being the true state ,ff the system is zero. This is a problem in

diagnosis problems because the transition probabilities to fault states are typicall v very, low, so particles are unlikel,, to

end up in fault states during the Monte Carlo predictive step. Without a panicle in a fault _tate. that _,tate will ,:_mtinue
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lault pr(>hahility ,;et to 0.05. Here there is a ,_ignificant delay between the wheel being commanded, and the detection of

the I#auit. In the b,)ttom line of graphs, the fault probability is set to _Is true value. ,rod in this case the fault is not
_ucc_:,_,tully detected because insufficient particles enter the fault ,;late. One might expect that once a particle enters the

tault _tate its _eight would be high since it would predict well. and at the re-sampling step it should lead to several new

particles being created. Unfortunately, this did not occur in this situation because although some particles did enter the

fault state, their continuous parameter values did not agree with the observations well, so they _till had low v, eights. The

continuous parameters did not match because each of the particles that entered the fault state came From the

C,)mman,,ted, Runnm_,, state, in which the current and wheel speed are expected to be much higher than the observed

_,alues. In the next section we examine two techniques for overcoming this problem and ensunng that faults are detected

even when their probability of occumng is Low.

4 USING DOMALN KNOWLEDGE TO DIRECT THE PARTICLE FILTER

The simplest solution to the sample impoverishment problem is to increase the number of particles being used. Given

the constraints imposed on on-board systems, this approach is probably unrealistic. The data presented above used

10.000 particles per wheel, and runs in Java in approximately 0.Ss per update on a 750M]-/z Pentium 3. This is probably

at _he upper limit of the number of particles we could expect to use on-board a rover--the time available for diagnosis is

longer, but the computation will be much slower. Thus running with ten times as many particles (which is roughly

equi',alent to multiplying the fault probability by ten) is probably impractical on the rover, and even 10,000 particles

may be unrealistic as the model gets more complex. This could be somewhat overcome by only increasing the number

of particles when there is some evidence that the system is predicting poorly. In order to achieve this, we need some

measure of when this occurs. The obvious measure is to look at the total weight of the particles after conditioning on the

observations. If no particles are predicting the observations well the total weight should drop. Unfortunately, in practice

this is rarely useful because there are a number of other possible causes tbr this behaviour. For example, particles

moving from a state in which there is high confidence in the sensor readings to a state with more sensor noise will tend

to drop in weight even if they are still predicting the observations well. We see this in the Marsokhod model because the

idle mode has relatively large variance for the observation noise, whereas the CommandedRunning mode has smaller

variance, so the total particle weight increases when the system moves from the Idle to the CommandedRunning mode,

even for wheel 6 where CommandedRunning predicts the observations poorly.

Another way to reduce the likelihood of sample impoverishment is to bias the distribution of particles in favour of states

which correspond to important faults. In this approach, the particle filter no longer approximates the true belief

distribution, but instead uses some oracle to identity "'important" future states, and allocates some portion of the

particles to those states. The particle filter can then be thought of as a way of dynamically allocating our available

computation. Each system mode is assigned a fraction of the available computation time. in the form of a number of

particles. As in the standard particle filter, particles move from state to state via T and E. and via the resampling step,

but the oracle ensures that every state it considers important is assigned at least some small fraction of the available

computation. This ensures that if a transition to one of the important states occurs, there will be particles in the state so

its probability will be non-zero. If the particles in one of these states predict the observations well twhich they should if

it is the true state), their weight will then increase, at which point the normal operation of the particle filter increases the

number of particles in the state.

The question that remains is how to implement the oracle. For a complex system such as a planetary rover, with many

components each with its own set of possible failure modes, there are exponentially many possible failure modes, so

this is a non-trivial problem. However, one approach that seems promising is to use a traditional model-based diagnosis

system such as Livingston [I ]. Livingston operates much more quickly than hybrid approaches because _t does not

c_msider the ctmtinuous dynamics of the system, hlstead, it uses a discrete abstraction of the problem, and tries to

identtfy likely states that are consistent with the observations. We pointed out in the introduction that this approach is

not ill _eileral _uilahle lbr diagrl(_,,illg r_J_ers, but it is ,,ui{able f_Jr the purpo,_e oi' identi()lng likely _ystcm m(xJes to
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Figure 2: Parti_le filter results for wheels I (nominal performance) and 6 (faulty, with a broken gear). [n the top row
the probability of the fault is ten times its true value, in the middle row it is 5 times, and the bottom row has the true

fault probability. The fault is easily detected in the top row. detected after a delay in the middle row, and not detected
in the bottom.

apply some computation in. By asking Livingston to provide a number _)t candidate hypotheses that explain the

observations, we can with high probability be confident that the true mode is in one of the hypotheses. We then assign

some computation to all of the modes consistent with the hypotheses. The speed of the qualitative system should mean

that using the oracle would not significantly impact computation, which still should depend only on the number of"

particles. The integration of Livingston with the particle filter approach is currently work in progress, as it adds a

number of additional complications including building an additional system model, and ensuring that the discrete and

hybrid models agree with one another and can easily be translated back and t'_)rth.
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1, and on the dght for wheel 6.

For simpler systems such as the Marsokhod wheel diagnosis we have used in this paper, the Livingston-based approach

is unnecessary. Instead, we can use an oracle based on tbrward search from the current high-probability states. Since

each system mode in this model has at most six possible successors, and there are typically only two to three high

probability modes at any time (often one of these succeeds another), we t'md in practice that in most cases a simple one-

step look-ahead search adds fewer than five modes to those that already contain particles.

5 RESULTS

The results we present here are based on the Marsokhod model we described in Section 2. Dr. Rich Washington

supplied the model and the data, which came from his work on using Kalman filters for rover diagnosis [7]. The only

changes made to the model were to make it suitable for use with a particle filter: no changes were made to model

parameters or transition probabilities. To demonstrate our approach we use a small piece of one of the telemetry data

files (the same piece used in Section 3) in which the rover is initially idle, and then a drive command is issued, resulting

in an increase in current to each wheel, followed by a corresponding increase in speed, and then a constant speed. As

before, wheel 6 is faulty, with a broken gear (this corresponds to the Gear&EncoderFaultRunning state in the model).

Figure 3 shows the results for the biased particle filter. For these results we used single step forward search from all

states with probability > 0.25 to select the set of bias states. Each of these states was then guaranteed to receive at least

0.5% of the total number of particles at each re-sampling step. The left hand graph is the probable states for Wheel 1, as

before. Like thegraph in the bottom row of Figure 2. the PremamreAction state was given high probability before step

13. This state appears in situations where the effects of an action are seen before the signal to perform the action is seen,

due to problems with the rover telemetry. In this case it is a spurious resuh due to the model of the Idle state not

allowing sufficient noise in the observations. A small adjustment to the model would remove this problem, which is

only present in the data for two of the wheels. The right hand graph shows the same data for Wheel 6. In this case, the

fault state is found at step 20. seven steps after the command to drive the wheel was observed. This compares

favourably with the results in Figure 2. where the fault was detected three steps after the command in the top row (ten

times probability), and [9 steps after it in the middle row (five times probability).

6 DISCUSSION AND RELATION TO OTHER WORK

One closely related piece of work ts Verma et al's decision-theoretic panicle tiher [9I. The problem they are attempting

to solve is essentially the same one we are interested in. but their approach is to _sign a utility to every state and use the

utility {o ,.hange the distrihution they draw the particles from. Ett'ectively. this is equi,,alent Co altering the transition

tullction s_) that the prohabitit_ t)fa transition from _tate _ with utility .t,J _ ",tare ," with utility .l_ becomes



LtiA_lllJXl , I;l',k:, ,uch ,Is the _11c '.re hd_e prc,_ClltCd iltLrc, lhc .Irlpr()klk;ho,_ _;¢eltl ,',_rv _llllil;lr. }Jt)wCvL'r. I'or intlrc complex

hl},k,. '.v,." ))_:llcvc" Ihal q_.lll_ .1 discrete kJiA_II()M _, h}ol .1_ ,in _)r;IcIc ;_ dircc1 ll_c ci)111{lllt_.l(IOli _)l Ih_' particle I_hcr '_lll

all,,_ ,_ u, make m_rc .:l[cctlvc LISC ,ll' Ihc a_mlahlc ._omputatlon ihkln the ut_lit',-ha_L'd method, which w_ll incr,2ase _he

i)r_>hilhtlH_,' _1 trilll_,ltlOll_ DI .t potc.'lltlAlly very high ntllllbcr ,>1 laAlll ,t.lld_, a_pc-_ally as ally rca._ollklhld _Jtllilv fHllCllOn

,,wmld .,_vc all (ault _latcx a h_h ktlllity.

•\nolhcr related effort is the ,_,ork ,_l Wa._hln_tt)n r 7] that applic,, Kalman Filtcr_ to tills problem. In Ihis '._,ork, the

,._mtulu_ms d?namics m each mode i_ tr:tckcd by a _et of Kalman filters. The main pmhlcm with this approach is that

the number of litters tends to mcrease over ume because ..'ach time a transition _s made to a ._tate the tnmal conditi_ms

for the tilter are different, and filters with different initial conditions cannot be combined. This _s not a problem for

particle liher-based approaches because the particle filters can represent arbitrary distributions o,,er the parameter

values. ,o particles entering a state with two different sets of initial c_)nditions ,,viii form a bl-modal distribution. -ks '.,,e

_a_d above, we used the model and data from this paper in our own ,,,,ork. We see fewer errors in the mode identification

w_th ,_ur approach than in Washington's paper, although we are sometimes .;lower to identify the fault, and _ur

cmnputati,)nal requirements are somewhat higher.

Lemer et al [101 use linear-Gaussian Bayesian networks to represent a hybrid system, and perform diagnosis by

computing the true belief state at every step. This avoids the problems we have described, which are directly caused by

the approximation approach. However, the computational requirements are far too high to be used on-board a ro,,er.

As we said in the introduction, this is a work in progress. There is still much work to do on the problem of how to

integrate a model from Livingston with this system to act as an oracle. We have demonstrated that a simple look-ahead

search performs quite well, but this is clearly inadequate for large diagnosis problems. We are also exarmning a number

of other approaches to improving diagnosis with particle filters, such as backtracking when prediction is poor, and re-

sampling past states based on observations that occurred more recently. Finally, we are investigating how a diagnosis

system of this type would fit with the CLARAty rover architecture [ 11 ] being used for future NASA rmssions to Mars.

We are actively involved in developing these approaches to be inte_ated with the Mars'07 mission.

We would like to thank Dr. Richard Washington for providing the model of the Marsokhod rover we used for this

paper, along with the telemetry, files from his field tests with the rover. This work has also been influenced by

discussions with Dr Washington, Vandi Verma, and Dr. Robin Morris.
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